A sample of vesicular basalt as a control in an experiment. The sample was obtained from Mt. Rainier |
One recent new addition to the university had the petrologist professor quite giddy, and him and I got to play around with the new device for awhile, figuring out all its quirks and functions, and running some initial control tests to ensure proper functionality. The device was something I'd never heard of before, but the explanation of its logic and level of precision made perfect sense. I speak of a Helium-based pycnometer (pictured right).
It is hard to get an accurate measurement of density for vesicular rocks, such as vesicular basalt, pumice, scoria, etc... due to the irregular arrangement of void space in their matrix where gasses exsolved. Helium is a relatively inert gas, so functions better than a nitrogen/oxygen/argon mixture which could be adsorbed by silicic material. Helium is better at diffusing within rock samples of high surface area with the tiniest, micrometer-level pore spaces, ie. vesicular rocks. Thus the displacement of Helium between containers (one with the rocks and one without), and application of the ideal gas law, and we get the volume of the rock sample with deadly accuracy. We tested out the device using some vesicular basalt (pictured above) gathered from pyroclastic flows ejected from Cascade Arc volcanoes. Looking at the basalt petrographically was important as well, so I made thin sections for viewing under the microscope and we viewed the optical mineralogy of the basalt.
The pycnometer is supposed to help the professor's research of the geochemistry of the Edziza volcanic complex within the NCVP. I hope to assist in as much of it until the concluding phases and journal publication, mainly because it allows further access and experience with new physical geography/geology toys. I've also recently got some fresh experience with a 15m long sediment transport flume, but that's another research tale I hope to tell after more time with the flume.
For other undergrads I strongly recommend volunteering your time & energy to your university profs and grad students. Trust me, they are likely to welcome your assistance, and you'll benefit from the experience and the contacts, especially if post-graduate studies is on your radar. It gets your foot in the door, and is thus invaluable.
Mt Edziza stratovolcano, which has erupted felsic magmas such as rhyodacite or trachyte/comendite. Image courtesy Canadian Encyclopedia |
For other undergrads I strongly recommend volunteering your time & energy to your university profs and grad students. Trust me, they are likely to welcome your assistance, and you'll benefit from the experience and the contacts, especially if post-graduate studies is on your radar. It gets your foot in the door, and is thus invaluable.
Additional Info:
- J.G. Souther and C.J. Hickson - Crystal fractionation of the basalt comendite series of the mount Edziza volcanic complex, British Columbia: Major and trace elements
- Helium Pycnometer
- Ideal Gas Law virtual lab
- University of Pittsburgh - Vesicular and Amygdaloidal Textures
No comments:
Post a Comment